

SpinCore PulseBlaster
LabVIEW Extensions

User's Manual

SpinCore Technologies, Inc.
http://www.spincore.com

http://www.spincore.com/
http://www.spincore.com/

SpinCore PulseBlaster
LabVIEW Extension

Congratulations and thank you for choosing a design from
SpinCore Technologies, Inc.

We appreciate your business!

At SpinCore we try to fully support the needs of our customers. If you
are in need of assistance, please contact us and we will strive to provide

the necessary support.

© 2008 SpinCore Technologies, Inc. All rights reserved.

SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice.
RadioProcessor™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc.
All other trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended
for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

2 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

Table of Contents

I. Overview ... 4

II. Installation ... 7

Method 1: Stand-Alone Executables .. 7

Method 2: Customizable VIs .. 7

III. General Information ... 8

Instruction Description .. 8

Path Terminals .. 9

Error Terminals ... 10

LabVIEW Program Flow ... 10

IV. VI descriptions ... 11

Example VIs ... 11
PBLV_Example1.vi ... 11
PBLV_SOS-Loop.vi ... 13
PBLV_Interface.vi .. 16

Basic SubVIs ... 19
pb_error_handler.vi .. 19
pb_init.vi ... 19
pb_core_clock.vi .. 19
pb_close.vi ... 19
pb_start_programming.vi ... 19
pb_inst_pbonly.vi ... 20
pb_stop_programming.vi ... 20
pb_start.vi .. 20
pb_stop.vi ... 20

V. Contact Information .. 21

3 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

I. Overview

The SpinCore PulseBlaster LabVIEW Extensions (PBLV) provide the functionality of
programming and controlling PulseBlaster functionality in PulseBlaster, PulseBlasterESR,
PulseBlasterDDS, and RadioProcessor boards using the simple NI LabVIEW graphical
programming interface. The package contains basic subVIs that can be used to include
PulseBlaster interaction from your own LabVIEW programs, as well as some complete
example VIs. Additionally, all of the examples are available as stand-alone applications to
control.

The PBLV is an intuitive graphical equivalent of the SpinAPI C functions. The GUI (known
as the front panel) has all the inputs needed to access the PulseBlaster including
instruction registers, clock frequency, and buttons for loading, starting, and stopping the
board. The input is then used in the back-end code (known as the block diagram) to
access the C functions that control and program the PulseBlaster. The LabVIEW block
diagram is a one-to-one equivalent of the corresponding C code, without having to write
code. An example of the front panel and block diagram are shown in Figure 1 and Figure
2.

All example VIs and subVIs are described in detail below.

4 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

5 2011-04-29
www.spincore.com

Figure 1: Example of PulseBlaster LabVIEW Extensions User
Interface

SpinCore PulseBlaster
LabVIEW Extension

6 2011-04-29
www.spincore.com

Figure 2: Example of PulseBlaster LabVIEW Extensions Block Diagram

SpinCore PulseBlaster
LabVIEW Extension

II. Installation

There are two methods of using the LabVIEW PulseBlaster Extensions. The first method
is a set of stand-alone executables which will control the PulseBlaster boards with a
simple, intuitive interface with no other necessary knowledge of LabVIEW programming.
The second method is a set of LabVIEW VIs which can be used with the LabVIEW
Development platform to create custom programs using the PBLV interface.

Method 1: Stand-Alone Executables

In order for PBLV-DDS-II stand-alone executables to work, the following must be installed:

● SpinCore Driver Suite - Please see the SpinCore Driver Suite Installation Guide
(http://www.spincore.com/support/spinapi/instructions/) for more information.

● National Instruments LabVIEW Run-Time Engine 2010
(http://www.spincore.com/support/PBLV/LVRTE2010std.exe) - Note if you have
LabVIEW 9.0 or later installed, this is not needed.

● LabVIEW PulseBlaster Extensions Stand-Alone executables located here.

Method 2: Customizable VIs

In order for PBLV-DDS-II customizable VIs to work, the following must be installed:
● SpinCore Driver Suite - Please see the SpinCore Driver Suite Installation Guide

(http://www.spincore.com/support/spinapi/instructions/) for more information.
● National Instruments LabVIEW 8.6 or later - If you do not have LabVIEW 8.6 or later

installed, you may download a 30-day evaluation
(https://lumen.ni.com/nicif/us/lveval/content.xhtml) of the latest LabVIEW
development software.
(NOTE: Customizable VIs are availabe for versions of LabVIEW as old as LabVIEW
8.0. For customizable VIs older than LabVIEW 8.6, please contact SpinCore
Technologies via the web forum.)

● LabVIEW PulseBlaster Extensions located here.
(NOTE: Customizable VIs use the C-calling convention. For customizable VIs that
use the WINAPI calling convention please contact SpinCore Technologies via the
web forum.)

7 2011-04-29
www.spincore.com

http://www.spincore.com/contact.shtml
http://www.spincore.com/support/PBLV/TTL.shtml
http://www.spincore.com/contact.shtml
https://lumen.ni.com/nicif/us/lveval/content.xhtml
https://lumen.ni.com/nicif/us/lveval/content.xhtml
http://www.spincore.com/support/spinapi/instructions/
http://www.spincore.com/support/spinapi/instructions/
http://www.spincore.com/support/PBLV/TTL.shtml
http://www.spincore.com/support/PBLV/LVRTE2010std.exe
http://www.spincore.com/support/PBLV/LVRTE2010std.exe
http://www.spincore.com/support/spinapi/instructions/
http://www.spincore.com/support/spinapi/instructions/

SpinCore PulseBlaster
LabVIEW Extension

III. General Information

Instruction Description

Throughout the LabVIEW PulseBlaster Extension, the
instruction word, corresponding to a given interval in the
pulse sequence, is given as shown to the left. The
instruction on the front panel (Figure 3) is broken up into
5 fields displayed from top to bottom:

● Comment space is an empty text box. This area is
used to annotate your instruction and is not
programmed onto the PulseBlaster board.

● Time is the duration that the current instruction is to
be held in seconds. Smaller timescales can be used
by using m for milliseconds, u for microseconds and n
for nanoseconds. Range and resolution varies
depending on what board is being used. This
corresponds to Length in SpinAPI.

● Output Pattern determines the state of each TTL
output bit. If an LED is on then it's corresponding
output bit is high, and if the LED is off then it's
corresponding output bit is low. This corresponds to
Flags in SpinAPI.
NOTE: Some firmware versions for the
PulseBlasterESR-PRO boards require bits 22-24 to
be high in order to have an instruction length longer
than 6 clock cycles. For more information see the
“BNC Short Pulse Feature” in Appendix I of the
PulseBlasterESR-PRO Manual.

● Program Flow determines the flow of program
instructions after the bit pattern is displayed.
Available instructions are:

○ CONTINUE - Program execution continues to
next instruction.

○ STOP - Stop execution of program.
○ LOOP - Specify beginning of a loop. Execution

continues to next instruction. Instruction data
used to specify number of loops.

○ END_LOOP Execution returns to beginning of loop and decrements loop
counter. Instruction data used to specify beginning of loop.

8 2011-04-29
www.spincore.com

Figure 3: PulseBlaster Instruction

http://www.spincore.com/CD/PulseBlasterESR/SP4/PBESR-Pro_Manual.pdf

SpinCore PulseBlaster
LabVIEW Extension

○ JSR - Program execution jumps to beginning of a subroutine. Instruction data
used to specify address of first subroutine instruction.

○ RTS - Program execution returns to instruction after JSR was called.
○ BRANCH - Program execution continues at specified instruction. Instruction

data specifies address of next instruction.
○ LONG_DELAY - For long interval instructions. Data field specifies a multiplier

of the length field. Execution continues to next instruction.
○ WAIT - Program execution stops and waits for software or hardware trigger.

Execution continues to next instruction after receipt of trigger. (Please see
SpinAPI documentation for more information on limits of certain Op Codes)

● Instruction Data is the data to be used for certain instructions determined by the Op
Code. Note for certain instructions this field is not used.

Figure 4 Below shows detail of the corresponding instruction word as depicted in
LabVIEW's block diagram.

Path Terminals

All of the SubVIs have path input and output terminals. This is a reference to the path
where spinapi.dll is installed on the PC. The default is C:\Program Files\SpinCore\SpinAPI\
dll\spinapi.dll however this may be changed depending on the installation. All subVIs
should have the “path in” connected. For ease of programming, the path terminals can be
daisy chained since all subVIs point to the same dll. See Figure 5 and Figure 6 for an
example of chaining these terminals.

9 2011-04-29
www.spincore.com

Figure 4: Example of how the instruction is created and sent to the board in the PBLV
Block Diagram

Figure 6: Example of chaining path and error
terminals

Figure 5: Path and error terminals

SpinCore PulseBlaster
LabVIEW Extension

Error Terminals

All of the SubVIs have error input and output terminals. When a VI is built, the error out
terminal of a subVI should be connected to the error in terminal of the following subVI.
These terminals are used to help facilitate sequential execution of the functions, as well as
provide debugging information to the user if an error occurs in the VI. See Figure 6 and
Figure 5 for an example of these terminals. When chaining, the order of the subVIs
corresponds to the order in which the functions will be called.

LabVIEW Program Flow

The LabVIEW Block diagram is set up to independently control the three major functions
(start/restart, stop/reset, load) using three while loops running in parallel. Within each loop
is another loop that continuously waits for the specified button to be pressed. Once the
button is pressed, the inner loop will exit and program flow will be passed to the chain of
subVIs. After the chain of functions completes, program flow will return to the inner loop to
wait for the button again. An example of this is shown in Figure 7.

10 2011-04-29
www.spincore.com

Figure 7: LabVIEW Program Flow Example

SpinCore PulseBlaster
LabVIEW Extension

IV. VI descriptions

Example VIs

PBLV_Example1.vi

This corresponds to the example c file pb24_ex1.c

This VI programs three 80-bit VLIW instructions into the PulseBlaster memory and starts
and stops the program on command. To start the VI press the Run button at the top of the
LabVIEW window. First you must insert the clock frequency value of the board into the
clock_freq (MHz) field as well as the path to spinapi.dll as described above. Initially the
instructions are already set up to turn on bit 1 for 200 ms and continue, turn off bit 1 for 100
ms and continue, and leave the bits off for 100 ms and branch to the start. You may
change these instructions as desired.

When the instructions are set up successfully, you must first load the board by clicking the
“LOAD BOARD” button. To start the program click on the “START” button, and to stop the
program click on the “STOP” button. All three functions are independent and may be run at
any time, however an instruction sequence must be loaded into the board before it can be
started. Caution: After pressing STOP, all output bits may maintain their final state.

See Figure 8 for a screen shot of PBLV_Example1.

11 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

12 2011-04-29
www.spincore.com

Figure 8: LabVIEW PulseBlaster Extension - Example 1

SpinCore PulseBlaster
LabVIEW Extension

PBLV_SOS-Loop.vi

This VI corresponds to the PulseBlaster Interpreter example SOS-Loop.pb

This VI demonstrates the LOOP and ENDLOOP instructions by outputting the Morse code
SOS signal (three short pulses, three long pulses and three short pulses). The VI is run
the same as in LVPB_Example1.vi.

This example VI sends the following 7 instructions to the PulseBlaster board:

Inst

#

Time Output

Pattern

Program

Flow

Inst

Data

Comments

0 100 ms On Loop 3 On for 100 ms, mark beginning of loop, loop 3 times
1 100 ms Off End Loop 0 Off for 100 ms, return to beginning of loop at inst 0
2 300 ms On Loop 3 On for 300 ms, mark beginning of loop, loop 3 times
3 100 ms Off End Loop 2 Off for 100 ms, return to beginning of loop at inst 2
4 100 ms On Loop 3 On for 100 ms, mark beginning of loop, loop 3 times
5 100 ms Off End Loop 4 Off for 100 ms, return to beginning of loop at inst 4
6 500 ms Off Branch 0 Off for 500 ms, then branch to instruction 0

13 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

The LabVIEW block diagram is slightly different in this example than in Example 1. In
Example 1, 3 different instructions are read and the 3 different pb_inst_pbonly subVIs are
called. In SOS-Loop, an array of 7 instructions is read and later passed into a for loop
where the individual instructions are indexed in order and programmed to the board using
the same pb_inst_pbonly subVI. This is done for a cleaner block diagram. All other
aspects of this example are identical to PBLV_Example1.vi. See Figure 10 for the SOS-
Loop Block Diagram.

14 2011-04-29
www.spincore.com

Figure 9: SOS-Loop Front Panel

SpinCore PulseBlaster
LabVIEW Extension

15 2011-04-29
www.spincore.com

Figure 10: SOS Loop Block Diagram

SpinCore PulseBlaster
LabVIEW Extension

PBLV_Interface.vi

This VI is a full system to be used to control the PulseBlaster boards to their full
capabilities. The VI can use the full range of instructions capable for the board (see
specific board manual for the maximum number of instructions allowed), program multiple
boards, as well as have the same functionality of the previous example VIs.

To use this VI, first you must set the location of spinapi.dll and the clock frequency of the
board in use. Then you can set how many instructions are to be used as well as the
contents of these instructions using the instruction registers as described above and then
program the board by clicking “LOAD BOARD”. Then click “START” to start the program
and “STOP” to stop the currently running program. Finally, if you have multiple boards in
your system, you can change the board by entering the correct board number into
“board_num” and then clicking “CHANGE BOARD” (NOTE: You must wait until the current
button becomes released before you can access the other controls). The number of
instructions can be changed on the fly and then reprogrammed to the board.

See Figure 11 for the front panel of this VI and Figure 12 for the block diagram.

16 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

17 2011-04-29
www.spincore.com

Figure 11: Front panel of PulseBlaster Interface. When the number of instructions is increased, they will show
up to the right of the current visible instruction and when the number is decreased they will disappear from the
screen. Only the visible instructions will be loaded onto the PulseBlaster's memory.

SpinCore PulseBlaster
LabVIEW Extension

18 2011-04-29
www.spincore.com

Figure 12: Block diagram of PulseBlaster Interface.

SpinCore PulseBlaster
LabVIEW Extension

Basic SubVIs
These SubVIs use Call Library Function Nodes to access SpinAPI's C-functions. By default
these nodes use the C-calling convention. For customizable VIs that use the WINAPI
calling convention please contact SpinCore Technologies via the web forum.

pb_error_handler.vi

This VI will catch an error from SpinAPI and pass it into the LabVIEW code for debugging
purposes. It takes the return code from any function call and determines if there is an error
(return code is a negative number). If an error occurred, the VI calls pb_get_error from
SpinAPI which returns the error text. This error text added to the LabVIEW error cluster
and the error status bit is set true. All functionality will be bypassed if a previous error is
passed into the VI.

pb_init.vi

Corresponds to the SpinAPI function int pb_init()

This VI initializes the PulseBlaster board. It calls the pb_init function from SpinAPI using
the Call Library Function Node. It then checks for an error using the pb_error_handler. If
there was an error at this stage, the VI determines if the board was not previously closed, if
so the VI clears the error, closes the board and retries pb_init. All functionality will be
bypassed if an error is passed into the VI.

pb_core_clock.vi

Corresponds to the SpinAPI function void set_clock(double clock_freq)

This VI sets the clock frequency of the board in MHz. It calls the pb_set_clock function
from SpinAPI using the Call Library Function Node. All functionality will be bypassed if an
error is passed into the VI.

pb_close.vi

Corresponds to the SpinAPI function int pb_close()

This VI releases PulseBlaster board. It calls the pb_close function from SpinAPI using the
Call Library Function Node. It then checks for an error using the pb_error_handler. All
functionality will be bypassed if a previous error is passed into the VI.

pb_start_programming.vi

Corresponds to the SpinAPI function int pb_start_programming(int device)

19 2011-04-29
www.spincore.com

http://www.spincore.com/contact.shtml

SpinCore PulseBlaster
LabVIEW Extension

This VI initializes the system to receive programming information. It calls the
pb_start_programming function from SpinAPI using the Call Library Function Node. The
Device Enum Control sets the device input of the pb_start_programming function. It then
checks for an error using the pb_error_handler. All functionality will be bypassed if an error
is passed into the VI.

pb_inst_pbonly.vi

Corresponds to the SpinAPI function int pb_inst_pbonly(int flags, int inst, int inst_data,
double length);

This VI sends one instruction of the pulse program to the board. It calls the pb_inst_pbonly
function from SpinAPI using the Call Library Function Node. The instruction control is the
80-bit VLIW to be programmed to the board. It contains the 24-bit TTL flags, Op Code
(which instruction to be executed), instruction data and length that the instruction should be
carried out It then checks for an error using the pb_error_handler. All functionality will be
bypassed if an error is passed into the VI.

pb_stop_programming.vi

Corresponds to the SpinAPI function int pb_stop_programming()

This VI tells the board to stop receiving programming information. It calls the
pb_stop_programming function from SpinAPI using the Call Library Function Node. It then
checks for an error using the pb_error_handler. All functionality will be bypassed if an error
is passed into the VI.

pb_start.vi

Corresponds to the SpinAPI function int pb_start()

Once board has been programmed, this instruction will start execution of pulse program. It
calls the pb_start function from SpinAPI using the Call Library Function Node. It then
checks for an error using the pb_error_handler. All functionality will be bypassed if an error
is passed into the VI.

pb_stop.vi

Corresponds to the SpinAPI function int pb_stop()

This VI stops output of the board. It calls the pb_stop function from SpinAPI using the Call
Library Function Node. It then checks for an error using the pb_error_handler. All
functionality will be bypassed if an error is passed into the VI.

20 2011-04-29
www.spincore.com

SpinCore PulseBlaster
LabVIEW Extension

V. Contact Information

SpinCore Technologies, Inc.
4631 NW 53rd Avenue, SUITE 103
Gainesville, FL 32653
USA

Telephone (USA): 352-271-7383
Fax (USA): 352-371-8679
Website: http://www.spincore.com
Web Form: http://www.spincore.com/contact.shtml

21 2011-04-29
www.spincore.com

http://www.spincore.com/contact.shtml
http://www.spincore.com/

	User's Manual
	I. Overview
	II. Installation
	Method 1: Stand-Alone Executables
	Method 2: Customizable VIs

	III. General Information
	Instruction Description
	Path Terminals
	Error Terminals
	LabVIEW Program Flow

	IV. VI descriptions

	Example VIs
	PBLV_Example1.vi
	PBLV_SOS-Loop.vi
	PBLV_Interface.vi

	Basic SubVIs
	pb_error_handler.vi
	pb_init.vi
	pb_core_clock.vi
	pb_close.vi
	pb_start_programming.vi
	pb_inst_pbonly.vi
	pb_stop_programming.vi
	pb_start.vi
	pb_stop.vi

	V. Contact Information

